Observation Interface of PDMS Membrane in a Microfluidic Chip Based on One-Step Molding

نویسندگان

  • Xiangyu Chen
  • Shuangyue Hou
  • Jian Chu
  • Ying Xiong
  • Penghui Xiong
  • Gang Liu
  • Yangchao Tian
چکیده

Nowadays, researchers are focusing on sorting, characterizing and detecting micron or submicron particles or bacteria in microfluidic chips. However, some contradictions hinder the applications of conventional microfluidic chips, including the low working distance of high resolving power microscopy and the low light transmittance of conventional microfluidic chips. In this paper, a rapid and readily accessible microfluidic fabrication method is presented to realize observation with high magnification microscopy. With the one-step molding process, the interconnections, the thin observation interface of polydimethylsiloxane (PDMS) membrane and microfluidic channels were integrated into an intact PDMS replica. Three kinds of PDMS replicas with different auxiliary beams were designed and optimized by leakage experiments and analytical software. The observation interfaces of a 170 μm thickness PDMS membrane enlarges the application domain of microfluidic chips. By adopting a solution of high magnification observation, microfluidic devices could be applied widely in medical science, biology and material science.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-dimensional interconnected microporous poly(dimethylsiloxane) microfluidic devices.

This technical note presents a fabrication method and applications of three-dimensional (3D) interconnected microporous poly(dimethylsiloxane) (PDMS) microfluidic devices. Based on soft lithography, the microporous PDMS microfluidic devices were fabricated by molding a mixture of PDMS pre-polymer and sugar particles in a microstructured mold. After curing and demolding, the sugar particles were...

متن کامل

Development of Elastomeric Optofluidic Devices for Lasing and Sensing

The term of optofluidics defines an emergent research field that combines microfluidics and optics. In many lab-on-a-chip applications, these two technologies are used in combining the microfluidics for sample delivery and optics for sensing and controlling. Optofluidic represents the implementation of optics in microfluidic platform that produces an unprecedented level of integration. Moreover...

متن کامل

Characterizing the Deformation of the Polydimethylsiloxane (PDMS) Membrane for Microfluidic System through Image Processing

Polydimethylsiloxane (PDMS) membranes have been widely used in the microfluidic community to achieve various functions such as control, sensing, filter, etc. In this paper, an experimental process was proposed to directly characterize the deformation of the on-chip PDMS membrane at large deformation based on the image processing method. High precision pressures were applied on the surface of th...

متن کامل

Fabrication of thermoset polyester microfluidic devices and embossing masters using rapid prototyped polydimethylsiloxane molds.

Plastics are increasingly being used for the fabrication of Lab-on-a-Chip devices due to the variety of beneficial material properties, affordable cost, and straightforward fabrication methods available from a range of different types of plastics. Rapid prototyping of polydimethylsiloxane (PDMS) devices has become a well-known process for the quick and easy fabrication of microfluidic devices i...

متن کامل

A Rapid Micromixer for Centrifugal Microfluidic Platforms

This paper presents an innovative mixing technology for centrifugal microfluidic platforms actuated using a specially designed flyball governor. The multilayer microfluidic disc was fabricated using a polydimethylsiloxane (PDMS) replica molding process with a soft lithography technique. The operational principle is based on the interaction between the elastic covering membrane and an actuator p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017